Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2020

Simultaneous Observations of Localized and Global Drift Resonance

In this study, we present Van Allen Probe observations showing that seed (hundreds of keV) and core ( 1 MeV) electrons can resonate with ultra-low-frequency (ULF) wave modes with distinctive m values simultaneously. An unusual electron energy spectrogram with double-banded resonant structure was recorded by energetic particle, composition, and thermal plasma (ECT)-magnetic electron ion spectrometer (MagEIS) and, meanwhile, boomerang stripes in pitch angle spectrogram appeared at the lower energy band. A localized drift resonance with m = 10 wave component was responsible for the resonant band peaked at ∼200 keV while a global drift resonance with m = 3 component gave rise to the upper band resonance peaked at ∼1 MeV. Time-Of-Flight on boomerang stripes suggested that the localized drift resonance with ∼200 keV electrons was confined within the plasmaspheric plume. Electron flux modulations were reproduced by numerical simulations in good consistency with the observations, supporting the scenario that localized and global drift resonance could coexist in the outer belt electron dynamics simultaneously.

Hao, Y.; Zhao, X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; Fu, S; Blake, J.; Reeves, G.; Claudepierre, S.;

Published by: Geophysical Research Letters      Published on: 05/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088019

drift resonance; ULF waves; Radiation Belt Dynamics; boomerang stripes; azimuthal wave number; multiple resonances; Van Allen Probes

2019

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecutive orbital passes) <400-keV electron enhancements during quiet periods. Our analysis reveals an incredibly cohesive observation that holds regardless of electron energies (~30 keV\textendash2.5 MeV) or geomagnetic conditions: the innermost Lpp is the innermost boundary of the initial energetic electron enhancements. Interestingly, the quantified energy-dependent relationship of the sudden, intense energetic electron enhancements, with respect to the innermost Lpp, also exhibit a very similar trend during both storm and nonstorm periods. In summary, the goal of this report is to provide a comprehensive quantification of this consistent relationship under various geomagnetic conditions, which will also enable better forecast and specification of energetic electrons in the inner magnetosphere.

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

2017

Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances

Bounce-resonant interactions with magnetospheric waves have been proposed as important contributing mechanisms for scattering near-equatorially mirroring electrons by violating the second adiabatic invariant associated with the electron bounce motion along a geomagnetic field line. This study demonstrates that low-frequency plasmaspheric hiss with significant wave power below 100 Hz can bounce-resonate efficiently with radiation belt electrons. By performing quantitative calculations of pitch-angle scattering rates, we show that low-frequency hiss induced bounce-resonant scattering of electrons has a strong dependence on equatorial pitch-angle αeq. For electrons with αeq close to 90\textdegree, the timescale associated with bounce resonance scattering can be comparable to or even less than 1 hour. Cyclotron- and Landau-resonant interactions between low-frequency hiss and electrons are also investigated for comparisons. It is found that while the bounce and Landau resonances are responsible for the diffusive transport of near-equatorially mirroring electrons to lower αeq, pitch-angle scattering by cyclotron resonance could take over to further diffuse electrons into the atmosphere. Bounce resonance provides a more efficient pitch-angle scattering mechanism of relativistic (>= 1 MeV) electrons than Landau resonance due to the stronger scattering rates and broader resonance coverage of αeq, thereby demonstrating that bounce resonance scattering by low-frequency hiss can contribute importantly to the evolution of the electron pitch-angle distribution and the loss of radiation belt electrons.

Cao, Xing; Ni, Binbin; Summers, Danny; Zou, Zhengyang; Fu, Song; Zhang, Wenxun;

Published by: Geophysical Research Letters      Published on: 09/2017

YEAR: 2017     DOI: 10.1002/2017GL075104

bounce resonance; Low-frequency hiss; Radiation Belt Dynamics; Van Allen Probes; wave-particle interactions

Spatial Scale and Duration of One Microburst Region on 13 August 2015

Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electron measurements to determine the spatial and temporal evolution of a microburst region in the morning MLT sector on 13 August 2015. The microburst region is found to extend across at least four hours in local time in the morning sector, from 09:00 to 13:00 MLT, and from L of 5 out to 10. The microburst event lasts for nearly nine hours. Smaller scale structure is investigated using the dual AeroCube-6 CubeSats, and is found to be consistent with the spatial size of whistler mode chorus wave observations near the equatorial plane.

Anderson, B.; Shekhar, S.; Millan, R.; Crew, A.; Spence, H.; Klumpar, D.; Blake, J.; O\textquoterightBrien, T.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023752

Microbursts; Radiation Belt Dynamics; Van Allen Probes; whistler mode chorus waves



  1